Trial Monitoring: Statistical Challenges and Multiple Outcomes

Garnet Anderson, PhD WHI Clinical Coordinating Center Fred Hutchinson Cancer Research Center

June 24, 2003

Overview of Trial Monitoring

- Background
- Procedural aspects
- Statistical challenges
- Developing the WHI monitoring plan

Irial	Monitoring	Background

1	
-	

Purpose of trial monitoring

- Assure the ethical conduct of the trial
 - Limit exposure to clearly inferior treatments
 - Avoid unnecessary experimentation
 - Assure appropriate steps are taken to ameliorate risk
- Assure that results will be valid and credible

Who monitors clinical trials?

- · Investigators
- Sponsor
- Data and Safety Monitoring Boards
 - Membership: scientists, physicians, consumers, ethicists
 - Selected for:
 - Expertise relevant to trial hypotheses
 - Skills in assessing data
 - · Perspective on relevant health issues
 - Freedom from "conflict of interest"

Scope of trial monitoring

- · Design and consent
- Recruitment
- Adherence
- · Outcomes assessment
- · Data quality
- · Intervention effects on outcomes

Scope of monitoring

- Some trials may need more limited monitoring
 - Low-powered studies
 - Intermediate outcome trials
 - Unbiased interim data cannot be obtained
 - Long interval between intervention and Outcome Pocock SJ. Clinical Trials: A practical approach. Wiley, 1983

Prevention trials features that affect monitoring

- Ostensibly healthy participants
- Low morbidity and mortality rates
- Interventions may have effects on several diseases
- · Unlikely to be repeated

Statistical challenges in monitoring prevention trials

- Incorporating multiple endpoints including endpoint-specific
 - Incidence rates
 - Disease burden
 - Size of intervention effects
 - Lag time to intervention effects

Green and Freedman (1994) Statistics in Medicine

-		
-		
-		
-		

Procedural aspects of trial monitoring

Investigator responsibilities

- Propose a trial monitoring plan aligned with
 - Motivating hypotheses
 - Strengths of the trial design and implementation
- · Collect, analyze and report data
 - Analysis and reporting should be limited to investigators without participant contact

DSMB responsibilities

- Review accumulating data
- Assure participant safety
- Assess treatment efficacy

Wittes (1993) Statistics in Medicine

-	
-	

Review accumulating data

- · Achieving recruitment goals
- Adherence to protocol
 - Eligibility
 - Interventions
 - Data collection
- Data quality

Assure participant safety

- Examine pre-specified safety endpoints
- Consider possible unanticipated intervention effects

Assess treatment efficacy

- Limit monitoring to pre-specified endpoints
- Avoid over-reliance on intermediate endpoints
- Determine if stated hypotheses have been adequately tested
 - Clear evidence of intervention effect
 - Convincing evidence of no effect

Other monitoring considerations

- Data preparation
 - Need an unbiased picture of the data
- Frequency of interim analyses
- Confidentiality
- · Blinding of DSMB
- Delineation of responsibilities for decisions
- An early stopping plan

Pocock SJ. Clinical Trials: A practical approach. Wiley, 1983

Statistical challenges in monitoring

- Accommodating asymmetry in risk and benefit decisions:
 - Allocation of type I error to the two tails
 - Spending function differences

Levels of statistical evidence

Evidence Evidence of harm of benefit

Pr(X < -1.645) = 0.05 and Pr(X > 1.96) = 0.025

Statistical challenges in monitoring

- Avoiding inflation of type I errors associated with multiple outcomes
 - Bonferroni correction-
 - Divide level of test (typically α =0.05) by number of outcomes
 - Or, multiply observed p-value by number of outcomes
 - ➤ Easy to implement
 - > Applicable to every setting
 - ➤ Generally quite conservative, especially for correlated outcomes

Statistical challenges in monitoring

- Avoiding inflation of type I errors associated with multiple 'looks'
 - Group-sequential methods
 - Pocock (1977) Biometrika
 - O'Brien and Fleming (1979) Biometrics
 - Lan and DeMets (1983) Biometrika

Repeated tests on accumulating data

# of repeated	Overall
0.05-level tests	significance level
1	0.05
2	0.08
3	0.11
4	0.13
5	0.14
10	0.19
20	0.25
100	0.37
Armitage et al. 1969	

Formal monitoring plan useful for

- Assure statistical properties of procedures
- Avoid over-interpretation of emerging data
- Assist in balancing potential risks and benefits

Deve	il	ት	וכ		15	y		c	1	I	•	"	U	'1	1	!!		J	'	•	11	ıί	J		۲	710	וג	
•	• • •	٠.	٠	• •	•	•	•	•	•	•	• •	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠			

An example from WHI

Design of WHI

CT = 68,133 WHI = 161,809

WHI primary & secondary outcomes

	DM	HRT	CaD
CHD	2°	1°	х
Angina	2°	2°	х
Revascularization	2°	2°	Х
CHF	2°	2°	Х
Peripheral vascular	2°	2°	Х
disease			
Stroke	2°	2°	х
Venous	х	2°	Х
thromboembolic			
disease			
Total CVD	2°	2°	Х
Breast cancer	1°	2°	2°
Colorectal cancer	1°	Х	2°
Endometrial cancer	2°	2°	Х
Ovarian Cancer	2°	2°	Х
Total Cancer	2°	2°	2°
Ilia Facaturas	х	2°	1°
Hip Fractures Other Fractures	x	2°	2°
Diabetes	2°	X	X
Total Mortality	2°	2°	2°

Specialties represented in WHI DSMB

- Cardiology
- Endocrinology
- Epidemiology
- Gynecology
- Oncology
- Statistics
- Nutrition
- Ethics
- · Behavioral Science

Initial DSMB agreement on

- Separate termination decisions for each CT component
- Component-specific list of endpoints
- Use of protocol-defined weighted logrank statistics
- No adjustment for multiple CT components
- Need mechanism to monitor unanticipated effects
- Use of O'Brien-Fleming group sequential methods
- · Asymmetry of risks and benefits

Jointly monitoring risks and benefits

- · Needed a 'global index' that
 - Provided a quantitative assessment of risks and benefits
 - Would be tailored to hypothesized effects
 - Could play a leading or supportive role

Purely global approaches

- Total mortality
 - Advantage: A compelling endpoint
 - Disadvantage: Limited sensitivity
- · Total morbidity
 - Advantage: Sensitive
 - Disadvantages: Problems in definition and ascertainment

Combined index definition

A combined index of endpoint effects can be written as

$$U = S w_i d_i$$

where:

- $\label{eq:difference} \boldsymbol{d}_{i} \ \ \text{= observed difference in proportions for} \\ \text{the ith endpoint}$
- w_i = weight associated with the ith endpoint

Combined index options

- Possible elements of index
 - Primary only
 - Secondary and safety endpoints
 - Death from other causes
- · Choice of weights
 - Expected proportion of deaths
 - Expected years of life lost
 - Quality of life
 - Bayesian priors according to the level of preliminary evidence of effect

Scenario 2-DM

		6 years	of average follow-up						
		<u>c</u> .	I (N=1	9,200)					
		8,800)							
	%	SE	%	SE	Z				
<u>Incidence</u>									
Breast Cancer	2.05	0.08	1.85	0.10	1.56				
Colorectal Cancer	1.07	0.06	0.92	0.07	1.63				
CHD	3.02	0.10	2.63	0.12	2.54*				
Mortality									
Breast Cancer	0.51	0.04	.046	0.05	0.78				
Colorectal Cancer	0.37	0.04	0.32	0.04	0.97				
CHD	1.21	0.06	1.05	0.07	1.64				
Other causes	5.50	0.13	5.11	0.16	1.85				

*Exceeds the 5% critical level of 2.45 using O'Brien and Fleming

Results for Scenario 2-DM

- · DSMB opinions
 - 8 continue, 2 stop, 2 cannot decideContinue
- Statistical methods
 - Primary outcomes Continue
 - Global methods
 - · Total mortality · Unweighted combination
 - Stop Weighted combination Stop Bayesian weighted combination Stop
 - Mixed Methods
 - 1o + global index significant • 1o + global index supportive

Continue Continue

Stop

Scenario 3-DM

average follow-up I (N=19,200) (N=28,800) % SF SE z Incidence Breast Cancer 2.05 0.09 2.63* 0.08 1.72 Colorectal Cancer 1.07 0.06 0.83 0.07 2.69* 3.02 0.10 3.02 0.12 0.00 Mortality Breast Cancer 0.51 0.04 0.43 0.05 1.27 **Colorectal Cancer** 0.37 0.04 0.29 0.04 1.59 1.21 5.50 0.06 0.13 1.21 5.50 0.08 CHD 0.00 0.16 Other causes 0.00

*Exceeds the 5% critical level of 2.45 using O'Brien and Fleming

Results for Scenario 3-DM

- DSMB opinions
 - 3 continue, 7 stop, 2 cannot decideStop(?)
- · Statistical methods
 - Primary outcomes - Global methods
 - · Total mortality Continue Unweighted combination Continue

Stop

- Weighted combination Continue Bayesian weighted combination Continue
- Mixed Methods
 - 1o + global index significant Continue • 1o + global index supportive Stop

Scenario 4-HRT/ERT

•••••	••••	6 years	of average	e follow-	ир
		<u>C</u>	I (N=7	,500+)	
	(N=1	0,500+)			
	%	SE	%	SE	Z
Incidence					
CHD	3.26	0.17	2.59	0.18	2.66*
Hip Fractures	1.87	0.13	1.37	0.13	2.65*
Breast Cancer	2.07	0.14	2.25	0.17	-0.82
Endometrial Cancer+	0.46	0.07	1.30	0.13	-5.72*
Mortality					
CHD	1.30	0.11	1.04	0.12	1.61
Hip Fractures	0.47	0.07	0.34	0.07	1.37
Breast Cancer	0.52	0.07	0.56	0.09	-0.36
Endometrial Cancer+	0.05	0.02	0.13	0.04	-1.80
Other causes	5.37	0.22	5.37	0.26	0.00

^{*}Exceeds the 5% critical level of 2.45 using O'Brien and Fleming +Based on initial protocol

Results for Scenario 4-HRT/ERT

•	DSMB opinions	
	 6 continue, 5 stop, 1 cannot decide 	Continue(?)
•	Statistical methods	
	 Primary outcomes 	Stop
	 Global methods 	
	 Total mortality 	Continue
	 Unweighted combination 	Continue
	 Weighted combination 	Continue
	 Bayesian weighted combination 	Continue
	 Mixed Methods 	
	 1o + global index significant 	Continue
	 1o + global index supportive 	Continue

Continue

1o/adverse effect + global index supportive

Scenario 6-CaD

6 years of average follow-up I (N=22,500) z Incidence Hip Fractures Colorectal Cancer 1.51 0.08 0.86 0.06 1.21 0.07 2.75* 0.06 1.31 Mortality Hip Fractures Colorectal Cancer Other causes 0.38 0.04 0.30 0.04 5.92 0.16 0.30 0.26 5.86 0.04 0.03 0.16 1.46 1.02 0.27

*Exceeds the 5% critical level of 2.45 using O'Brien and Fleming

Results for Scenario 6-CaD

- DSMB opinions
 - 3 continue, 7 stop, 2 cannot decide Stop (?)
- · Statistical methods
 - Primary outcomes

Stop

- Global methods
 - Total mortalityUnweighted combination
- Continue Continue
- Weighted combinationBayesian weighted combination
- Continue Continue
- Mixed Methods
 - 1o + global index significant
- Continue
- 1o + global index supportive

Stop

Scenario 7-HRT/ERT

•••••		<u>c</u>		f-average follow-up I (N=7,500+)	
		0,500+)	0/	~	-
	%	SE	%	SE	Z
<u>Incidence</u>					
CHD	3.26	0.17	3.04	0.20	0.84
Hip Fractures	1.87	0.13	1.74	0.15	0.65
Breast Cancer	2.07	0.14	243	0.18	-1.60
Endometrial Cancer+	0.46	0.07	1.30	0.13	5.72
Mortality					
CHD	1.30	0.11	1.22	0.13	0.48
Hip Fractures	0.47	0.07	0.44	0.08	0.30
Breast Cancer	0.52	0.07	0.61	0.09	-0.79
Endometrial Cancer+	0.05	0.02	0.13	0.04	-1.80
Other causes	5.37	0.22	5.37	0.26	0.00

*Exceeds the 5% critical level of 2.45 using O'Brien and Fleming +Based on initial protocol

Results for Scenario 7-HRT/ERT

- DSMB opinions
 - 3 continue, 5.5 stop, 3.5 cannot decide! Stop (?)
- Statistical methods
 - Primary outcomes
- Continue

Global methodsTotal mortality

- Continue Continue
- Unweighted combination
- Continue
- Weighted combinationBayesian weighted combination
- Continue
- Mixed Methods
- Continue
- 10 + global index significant10 + global index supportive
- Continue
- 1o/adverse effect + global index supportive
- Stop

Scenario 8-HRT/PERT

•••••		<u>c</u> ´	s of averag <u>I (N=7,</u>		-up
	(N=6 %	,500+) SE	%	SE	z
<u>Incidence</u>					
CHD	3.26	0.23	3.04	0.21	0.72
Hip Fractures	1.87	0.17	1.74	0.16	0.56
Breast Cancer	2.07	0.18	2.79	0.20	-2.69*
Endometrial Cancer	0.46	0.09	0.46	80.0	0.00
Mortality					
CHD	1.30	0.14	1.22	0.13	0.41
Hip Fractures	0.47	0.09	0.44	0.08	0.25
Breast Cancer	0.52	0.09	0.70	0.10	-1.33
Endometrial Cancer	0.05	0.03	0.05	0.03	0.00
Other causes	5.37	0.29	5.37	0.28	0.00

^{*}Exceeds the 5% critical level of 2.45 using O'Brien and Fleming +Based on initial protocol

Results for Scenario 8-HRT/PERT

· DSMB opinions

- 0 continue, 12 stop, 0 cannot decide Stop

Statistical methods

- Primary outcomes Continue

- Global methods

• Total mortality Continue
• Unweighted combination Continue
• Weighted combination Continue
• Bayesian weighted combination Continue

Mixed Methods

10 + global index significant
 10 + global index supportive
 Continue

1o/adverse effect + global index supportive Stop

Summary of scenario results

DSMB majority opinion C C S? C? C S? S? S ccs s cs c c Primary endpoint Global methods Total mortality $\texttt{C} \; \texttt{S} \; \texttt{C} \; \; \texttt{C}$ csccccccUnweighted combination Weighted combination C S C C C C C Bayesian weighted csccccc Mixed methods 1°+global significant C C C C C C C 1° + global supportive C C S C C S C C 1° or adverse effect +global significant C C S S C S S S

••••••<u>4•2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u>

Conclusions from exercise Monitoring primary endpoint was insufficient · Global indices - Performed similarly - Were somewhat insensitive to overall balance of risks and benefits Mixed approach using primary endpoint supported by a global index best captured DSMB consensus Conclusions from exercise · Needed more sensitivity to prespecified adverse effects • Use of scenarios was very beneficial to creating formal monitoring plan WHI monitoring plan for E+P trial A Case Study in Early Stopping

E+P monitoring plan

- · Primary Endpoint: CHD
- · Primary Safety Endpoint: Breast Cancer
- · Secondary Endpoints:
 - Hip fractures
 - Stroke
 - Pulmonary Embolism
 - Endometrial Cancer
 - Colorectal Cancer
 - Death from other causes

WHI Estrogen+Progestin Trial Global Index

- Defined for each woman as the earliest of:
 - CHD
 - Invasive breast cancer
 - Stroke
 - PE
 - Endometrial cancer
 - Colorectal cancer
 - Hip fracture
 - Death from other causes

E+P trial monitoring for benefit Early stopping considerations required:

- Evidence of CHD benefit
 - Statistical rules based on O'Brien-Fleming (OBF) procedures using a 0.025-level, one-sided test
- AND
- · Global index supportive of benefit
 - Statistical rules based on OBF procedures using a 0.05-level, onesided test
 - O'Brien PC, Fleming TR. Biometrics. 1979;35:549-556.

Trial monitoring for adverse effects Early stopping considerations required:

- Evidence of increase in breast cancer
 - OBF procedure using a 0.05-level one-sided, weighted logrank test.

OR

- Evidence of increase in any of the other 7 prespecified endpoints
 - OBF procedure using a 0.05-level one-sided, weighted logrank test, with Bonferroni correction.

AND

Global index supportive of overall harm (Z< -1.0)

Freedman, et al. Control Clin Trials. 1996;17:509-525.

Limitations of a monitoring plan

- Real data are more complex than the scenarios
- Care is needed in considering any modification to monitoring plan based on emerging trial data
 - Avoid redefinition of endpoints
- Assumptions underlying the trial design and monitoring plan may be incorrect

Monitoring plan is a guideline

- Emerging external data may impact assessment
- Statistical boundaries provide tools for assessing strength of the data
- · Good judgment is always required

-	

Next: Stopping the WHI E+P	
Trial	
The finale of our case study in trial monitoring	
J. A. J	